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INTERPRETING A FIELD IN ITS HEISENBERG GROUP

RACHAEL ALVIR, WESLEY CALVERT, GRANT GOODMAN, VALENTINA HARIZANOV,
JULIA KNIGHT, RUSSELL MILLER, ANDREY MOROZOV,

ALEXANDRA SOSKOVA, AND ROSE WEISSHAAR

Abstract. We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by H (F )
the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in H (F ), using
existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is
interpreted inH (F ) using computable Σ1 formulas with no parameters. We give two proofs. The first is an
existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán. This proof
allows the possibility that the elements of F are represented by tuples inH (F ) of no fixed arity. The second
proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of F
represented by triples inH (F ). Looking at what was used to arrive at this parameter-free interpretation of
F inH (F ), we give general conditions sufficient to eliminate parameters from interpretations.

§1. Introduction. The Heisenberg group of a field F is the upper-triangular
subgroup of GL3(F ) in which all matrices have 1’s along the diagonal and 0’s below
it. Maltsev showed that there are existential formulas with parameters, which, for
every field F, define F in its Heisenberg groupH (F ). In this article we will produce
existential formulas without parameters, which, for every field F, interpret F in
H (F ). Observing what is used to obtain this result, we will then formulate a general
result on removing parameters from an interpretation.

Languages are assumed to be computable, and structures are assumed to have
universe a subset of !. For a given structure A, the atomic diagram D(A) may be
identified, via Gödel numbering, with a subset of !. We then identify A itself with
the characteristic function of D(A). Classes of structures have a fixed language,
and are closed under isomorphism. The following notion, of “Turing computable
embedding,” is from [1] , based on the earlier notion of “Borel embedding” from [2].

Definition 1.1. For classes K,K ′, we say that K is Turing computably embedded
in K ′, and we write K ≤tc K ′, if there is a Turing operator Θ : K → K ′ such that
for all A,B ∈ K , A ∼= B iff Θ(A) ∼= Θ(B).

Medvedev reducibility is used to compare “problems,” where a problem is a subset
of !! . The problems that concern us have the form “build a copy of A.”

Definition 1.2. For structures A and B, we say that A is Medvedev reducible to
B, and we write A ≤s B, if there is a Turing operator Φ that takes copies of B to
copies of A.
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We are interested in “uniform” Medvedev reductions, which, for a given Turing
computable embedding Θ, take any copy of a structure in the range of Θ to a copy
of its pre-image.

Definition 1.3. Let Θ be a Turing computable embedding of a class K to a
class K ′. We say that the structures in K are uniformly Medvedev reducible to their
Θ-images in K ′, if there is a Turing operator Φ such that for all A ∈ K , Φ serves as
a Medvedev reduction of A to Θ(A).

Often, when we have a Turing computable embedding Θ : K → K ′ with a uniform
Medvedev reduction of the structures in K to their Θ-images, it is because there
are simple formulas that define, for all A ∈ K , an interpretation of A in Θ(A).
Montalbán defined a very general kind of interpretation of A in B that yields a
uniform Medvedev reduction of A to B. In this definition, the tuples from B that
represent elements of A may have arbitrary arity. The interpretation is defined by
formulas that have no specific arity. Here, the arity of a formula is the number of its
free variables. As usual, we often write B both for the structure and its domain.

Definition 1.4 (Generalized computable Σ1-definition). Let R ⊆ B<! , and let
ϕn(x̄n)n∈! be a computable sequence of computable Σ1 formulas, where ϕn(x̄n)
has arity n. If for each n, ϕn(x̄n) defines R ∩ Bn, then we say that

∨
n ϕn(x̄n) is a

generalized computable Σ1 definition of R.

Since a generalized computable Σ1 formula allows consideration of tuples of all
finite arities, it is technically not in L!1! ; however, it is a computable disjunction,
over all n ∈ !, of L!1! formulas ϕn with free variables x1, ... , xn. Generalized
computable Σ1 formulas are involved in the following definition.

Definition 1.5 (Montalbán). For a relational structure A = (A, (Ri)i∈I ) and a
structure B, we say A is effectively interpreted in B if there exist a set D ⊆ B<! and
relations ∼ and R∗

i on D such that:

1. (D, (R∗
i )i∈I )/∼ ∼= A, and

2. there is a computable sequence of generalized computable Σ1 formulas, with
no parameters, defining the set D and the following relations on D : ∼
and the complementary relation ̸∼, and for each i, the relation R∗

i and the
complementary relation ¬R∗

i .

Notation and terminology. We may later simply write ± ∼ (or ±R∗
i ) for the

complementary pair of relations ∼ and ̸∼ (or R∗
i and ¬R∗

i ). We may think of
the pair of generalized computable Σ1 formulas that define the complementary pair
± ∼ (or ±R∗

i ) as a generalized ∆1 definition of ∼ (or R∗
i ).

Remark. The concept of Σ-definability, which is a staple of logic in the Russian
tradition, is closely related to effective interpretability.

Below, we illustrate the use of tuples of arbitrary arity.

Proposition 1.1. If A is computable, then it is effectively interpreted in all
structures B.
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Proof. Let D = B<! . Let b̄ ∼ c̄ if b̄, c̄ are tuples of the same length. For
simplicity, suppose A = (!,R), where R is binary. If A |= R(m, n), let R∗(b̄, c̄)
hold for all b̄ of length m and c̄ of length n. Then (D,R∗)/∼ ∼= A. ⊣

If A is a computable linear ordering and B is a structure for the empty language,
then Proposition 1.1 says that A is effectively interpreted in B, but there is clearly
no interpretation of the usual kind, with relations of fixed arity, defined by L!1!

formulas.
The following definition was first presented as [9, Definition 3.1].

Definition 1.6. A computable functor from B to A is a pair (Φ,Ψ) of Turing
operators such that:

1. Φ takes copies of B to copies of A, and
2. Ψ takes each triple (B1, f,B2) such that Bi ∼= B for i = 1, 2 and B1 ∼=f B2 to

a function g such that Φ(B1) ∼=g Φ(B2). Moreover, Ψ preserves identity and
composition.

Harrison-Trainor, Melnikov, Miller, and Montalbán proved the following in [3].
A subsequent generalization appears in [4].

Theorem 1.2. For a pair of structures A and B, the following are equivalent:
1. A is effectively interpreted in B, and
2. there is a computable functor from B to A.

Remarks. In the proof of Theorem 1.2, it is important that D consists of
tuples of arbitrary arity. Proposition 1.1 says that a computable structure A can
be effectively interpreted in an arbitrary structure B. We proved this by specifying
an interpretation, in which D was the set of all tuples from B. There is an alternative
proof of Proposition 1.1, using Theorem 1.2. We define a computable functor (Φ,Ψ)
from B to A in which Φ ignores the oracle and simply computes A, while Ψ always
computes the identity function.

In this article we will consider uniform effective interpretations and uniform
computable functors.

Definition 1.7. Suppose K ≤tc K ′ via Θ. The structures in K are uniformly
effectively interpreted in their Θ-images if there is a fixed collection of generalized
computable Σ1 formulas (without parameters) that, for all A ∈ K , define an
interpretation of A in Θ(A).

Definition 1.8. Suppose K ≤tc K ′ via Θ. Turing operators Φ and Ψ form a
uniform computable functor from the structures in the range of Θ to their pre-
images provided that for all A ∈ K , (Φ,Ψ) serves as a computable functor from
Θ(A) to A.

Here is a uniform version of Theorem 1.2, also from [3].

Theorem 1.3. For classesK,K ′ withK ≤tc K ′ via Θ, the following are equivalent:
1. there is a uniform effective interpretation of the structures A ∈ K in the

corresponding structures Θ(A), and
2. there is a uniform computable functor (Φ,Ψ) from the structures Θ(A) in the

range of Θ to their pre-images A.
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It is natural to ask whether, when A ≤s B, there must be an effective interpretation
of A in B. It is also natural to ask whether, when A is effectively interpreted in
(B, b̄) with parameters b̄, it must be effectively interpreted in B without parameters.
Kalimullin [6] gave examples providing negative answers to both questions.

In [7], Maltsev defined a Turing computable embedding of fields—indeed, of
all rings—into two-step nilpotent groups. The embedding takes each field F to
its Heisenberg group H (F ). To show that the embedding preserves isomorphism,
Maltsev gave uniform existential formulas defining a copy of F in H (F ). The
definitions involved a pair of parameters, whose orbit is defined by an existential
formula (in fact, the formula is quantifier-free). In Section 2, we recall Maltsev’s
definitions. In Section 3, we describe a uniform computable functor that, for all
countable F, takes copies of H (F ), with their isomorphisms, to copies of F, with
corresponding isomorphisms. By Theorem 1.3, it follows that there is a uniform
effective interpretation of countable fields F in their Heisenberg groups H (F ) with
no parameters. In Section 4, we give explicit finitary existential formulas that define
such an interpretation, and also show that parameter-free interpretations necessarily
involve an equivalence relation ∼ distinct from equality. (Thus, while one can
interpret F in H (F ) without parameters, one cannot define F in H (F ) without
parameters.) In Section 5, we note that although F is effectively interpretable
in H (F ), and H (F ) is effectively interpretable in F, we do not, in general, have
effective bi-interpretability. In Section 6, we generalize our process of passing from
Maltsev’s definition, with parameters, to the uniform effective interpretation, with
no parameters.

§2. Defining F in H(F). In this section, we recall Maltsev’s embedding of fields
in two-step nilpotent groups, and his formulas that define a copy of the field in the
group. Recall that for a field F, the Heisenberg groupH (F ) is the set of matrices of
the form

h(a, b, c) =

⎡

⎣
1 a c
0 1 b
0 0 1

⎤

⎦

with entries in F. Note that h(0, 0, 0) is the identity matrix. We are interested in
non-commuting pairs in H (F ). One such pair is (h(1, 0, 0), h(0, 1, 0)). For u =
h(u1, u2, u3) and v = h(v1, v2, v3), let

∆(u,v) =
∣∣∣∣
u1 v1
u2 v2

∣∣∣∣ .

For a group G, we write Z(G) for the center. For group elements x, y, the
commutator is [x, y] = x–1y–1xy. The following technical lemma provides much
of the information we need to show that F is defined, with parameters, in H (F ).

Lemma 2.1.

1. (a) For u and v, the commutator, [u, v], is h(0, 0,∆(u,v)), and
(b) [u, v] = 1 iff ∆(u,v) = 0.
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2. Let u = h(u1, u2, u3), and let v = h(v1, v2, v3). If
[
u1
u2

]
=

[
0
0

]
, then u ∈

Z(H (F )). If
[
u1
u2

]
̸=

[
0
0

]
, then [u, v] = 1 iff there exists α such that

[
v1
v2

]
= α ·

[
u1
u2

]
.

3. The center Z(H (F )) consists of the elements of the form h(0, 0, c).
4. If [u, v] ̸= 1, then x ∈ Z(H (F )) iff [x, u] = [x, v] = 1.

Proof. For Part 1, (a) is proved by direct computation, and (b) follows from
(a). Parts 2 and 3 are easy consequences of Part 1. We prove Part 4. Suppose
[u, v] ̸= 1. If x ∈ Z(H (F )), then it commutes with both u and v. We must show
that if x commutes with both u and v, then x ∈ Z(H (F )). Let u = h(u1, u2, u3),
v = h(v1, v2, v3), and x = h(x1, x2, x3). By Part 2, since [x, u] = 1, there exists α

such that
[
x1
x2

]
= α

[
u1
u2

]
. Similarly, since [x, v] = 1, there exists $ such that

[
x1
x2

]
= $

[
v1
v2

]
. Since the vectors

[
u1
u2

]
and

[
v1
v2

]
are linearly independent,

this implies that α = $ = 0. It follows that x1 = x2 = 0, so x ∈ Z(H ). ⊣

Corollary 2.2. If x ∈ H (F ) is fixed by all automorphisms ofH (F ), then x = 1.

Proof. Write x = h(a, b, c). Lemma 2.1(3) shows a = b = 0, since all conjuga-
tions fix x. But the automorphism of H (F ) mapping h(x, y, z) to h(y, x, xy – z),
which interchanges h(1, 0, 0) with h(0, 1, 0), maps h(0, 0, c) to h(0, 0, – c), hence
shows that c = 0 as well. ⊣

The next lemma tells us how, for any non-commuting pair u, v in the group
(H (F ), ∗), we can define operations + and ·, and an isomorphism f from F to
(Z(H (F )),+, ·).

Lemma 2.3. Let u = h(u1, u2, u3) and v = h(v1, v2, v3) be a non-commuting pair.
Assume that α, $, % ∈ F . Let x = h(0, 0, α · ∆(u,v)), y = h(0, 0, $ · ∆(u,v)), and z =
h(0, 0, % · ∆(u,v)). Then:

1. α + $ = % iff x ∗ y = z, where ∗ is the matrix multiplication.
2. α · $ = % iff there exist x′ and y′ such that [x′, u] = [y′, v] = 1, [u, y′] = y,

[x′, v] = x, and z = [x′, y′].

Proof. For Part 1, matrix multiplication yields the fact that

h(0, 0, a) ∗ h(0, 0, b) = h(0, 0, a + b).

Then α + $ = % iff

x ∗ y = h(0, 0, α · ∆(u,v)) ∗ h(0, 0, $ · ∆(u,v)) = h(0, 0, % · ∆(u,v)) = z.

For Part 2, first suppose that α · $ = %. We take x′ = h(α · u1, α · u2, 0), and
y′ = h($ · v1, $ · v2, 0). Then ∆(x′,u) = 0, so [x′, u] = h(0, 0, 0) = 1. Similarly,
[y′, v] = 1. Also, ∆(x′,v) = α · ∆(u,v), so [x′, v] = h(0, 0, α · ∆(u,v)) = x. Similarly,
∆(u,y′) = $ · ∆(u,v), so [u, y′] = h(0, 0, $ · ∆(u,v)) = y. Finally, ∆(x′,y′) = α · $ ·
∆(u,v) = % · ∆(u,v), so [x′, y′] = h(0, 0, % · ∆(u,v)) = z.
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Now, suppose we have x′ and y′ such that [x′, u] = [y′, v] = 1, [u, y′] = y,
[x′, v] = x, and [x′, y′] = z. Say that x′ = h(x′1, x

′
2, x

′
3) and y′ = h(y′1, y

′
2, y

′
3).

Since [x′, v] = x, ∆(x′,v) = α · ∆(u,v), so
[
x′1
x′2

]
= α

[
u1
u2

]
. Since [u, y′] = y,

we have ∆(u,y′) = $ · ∆(u,v), so
[
y′1
y′2

]
= $

[
v1
v2

]
. Combining these facts, we

see that ∆(x′,y′) =
∣∣∣∣
x′1 y′1
x′2 y′2

∣∣∣∣ =
∣∣∣∣
α · u1 $ · v1
α · u2 $ · v2

∣∣∣∣ = α · $ · ∆(u,v). Since [x′, y′] =

z, ∆(x′,y′) = % · ∆(u,v). Since u and v do not commute, ∆(u,v) ̸= 0. Therefore,
α · $ = %. ⊣

The main result of the section follows directly from Lemmas 2.1 and 2.3.

Theorem 2.4 (Maltsev and Morozov). For an arbitrary non-commuting pair (u, v)
inH (F ), we get F(u,v) = (Z(H (F )),⊕,⊗(u,v)) where

1. x ∈ Z(H (F )) iff [x, u] = [x, v] = 1,
2. ⊕ is the group operation from H (F ),
3. ⊗(u,v) is the set of triples (x, y, z) such that there exist x′, y′ with [x′, u] =

[y′, v] = 1, [x′, v] = x, [u, y′] = y, and [x′, y′] = z, and
4. the function g(u,v) taking α ∈ F to h(0, 0, α · ∆(u,v)) ∈ H (F ) is an isomorphism

between F and F(u,v).

Note: From Part 4, it is clear that h(0, 0,∆(u,v)) is the multiplicative identity in
F(u,v)—we may write 1(u,v) for this element.

Proposition 2.5. There is a uniform Medvedev reduction Φ of F toH (F ).

Proof. Given G ∼= H (F ), we search for a non-commuting pair (u, v) in G, and
then use Maltsev’s definitions to get a copy of F computable from G. ⊣

It turns out that the Medvedev reduction Φ is half of a computable functor. In
the next section, we explain how to get the other half.

§3. The computable functor. In the previous section, we saw that, for any field
F and any non-commuting pair (u, v) in H (F ), there is an isomorphic copy F(u,v)
of F defined in H (F ) by finitary existential formulas with parameters (u, v). The
defining formulas are the same for all F. Hence, there is a uniform Turing operator Φ
that, for all fields F, takes copies ofH (F ) to copies of F. In this section, we describe
a companion operator Ψ so that Φ and Ψ together form a uniform computable
functor. For any field F, and any triple (G1, p, G2) such thatG1 andG2 are copies of
H (F ) and p is an isomorphism fromG1 ontoG2, the function Ψ(G1, p, G2) must be
an isomorphism from Φ(G1) onto Φ(G2), and, moreover, the isomorphisms given
by Ψ must preserve identity and composition. We saw in the previous section that,
for any field F, and any non-commuting pair (u, v) in H (F ), the function g(u,v)
taking α to h(0, 0, α · ∆(u,v)) is an isomorphism from F onto F(u,v). We use this g(u,v)
below.

Lemma 3.1. For all F and all non-commuting pairs (u, v), (u′, v′) in H (F ), there
is a natural isomorphism f(u,v),(u′,v′) from F(u,v) onto F(u′,v′). Moreover, the family of
isomorphisms f(u,v),(u′,v′) is functorial; i.e.,
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1. for every non-commuting pair (u, v), the function f(u,v),(u,v) is the identity, and
2. for any three pairwise non-commuting pairs (u, v), (u′, v′), and (u′′, v′′),

f(u,v),(u′′,v′′) = f(u′,v′),(u′′,v′′) ◦ f(u,v),(u′,v′).

Proof. We let f(u,v),(u′,v′) = g(u′,v′) ◦ g–1
(u,v). This is an isomorphism from F(u,v)

onto F(u′,v′). It is clear that f(u,v),(u,v) is the identity. Consider non-commuting
pairs (u, v), (u′, v′), and (u′′, v′′). We must show that f(u′,v′),(u′′,v′′) ◦ f(u,v),(u′,v′) =
f(u,v),(u′′,v′′). We have:

f(u′,v′),(u′′,v′′) ◦ f(u,v),(u′,v′) = g(u′′,v′′) ◦ g–1
(u′,v′) ◦ g(u′,v′) ◦ g–1

(u,v)

= g(u′′,v′′) ◦ g–1
(u,v)

= f(u,v),(u′′,v′′). ⊣

The next lemma says that there is a uniform existential definition of the family of
isomorphisms f(u,v),(u′,v′).

Lemma 3.2. There is a finitary existential formula &(u, v, u′, v′, x, y) that, for
any two non-commuting pairs (u, v) and (u′, v′), defines the isomorphism f(u,v),(u′,v′)
taking x ∈ F(u,v) to y ∈ F(u′,v′).

Proof. Since the operation ⊗(u,v) and the element 1(u′,v′) are definable by ∃–
formulas with parameters u, v and u′, v′, respectively, it suffices to prove the
equivalence

f(u,v),(u′,v′)(x) = y ⇔ x ⊗(u,v) 1(u′,v′) = y.

First assume that f(u,v),(u′,v′)(x) = y, i.e., y = g(u′,v′) ◦ g–1
(u,v)(x). Let α = g–1

(u,v)(x),
i.e., x = h(0, 0, α · ∆(u,v)). It follows that y = h

(
0, 0, α · ∆(u′,v′)

)
. Then

x ⊗(u,v) 1(u′v′) = h
(
0, 0, α · ∆(u,v)

)
⊗(u,v) h

(
0, 0,∆(u′,v′)

)

= h
(
0, 0, α · ∆(u,v)

)
⊗(u,v) h

(
0, 0,

∆(u′,v′)

∆(u,v)
· ∆(u,v)

)

= h
(

0, 0, α ·
∆(u′,v′)

∆(u,v)
· ∆(u,v)

)

= h
(
0, 0, α · ∆(u′,v′)

)
= y.

Assume now that x ⊗(u,v) 1(u′,v′) = y and let x = h
(
0, 0, α · ∆(u,v)

)
. Then

y = x ⊗(u,v) 1(u′,v′) = h
(
0, 0, α · ∆(u,v)

)
⊗(u,v) h

(
0, 0,∆(u′,v′)

)

= h
(
0, 0, α · ∆(u′,v′)

)
= g(u′,v′) ◦ g–1

(u,v)(x) = f(u,v),(u′,v′)(x). ⊣

We will use Lemmas 3.1 and 3.2 to prove the following.

Proposition 3.3. There is a uniform computable functor that, for all fields F, takes
H (F ) to F.

Proof. Let Φ be the uniform Medvedev reduction of F to H (F ). Take copies
G1, G2 of H (F ) and take p such that G1 ∼=p G2. We describe q = Ψ(G1, p, G2)
as follows. Let (u, v) be the first non-commuting pair in G1, and let (u′, v′) be
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the first non-commuting pair in G2. Now, p takes (u, v) to a non-commuting
pair (p(u), p(v)), and p maps F(u,v) isomorphically onto F(p(u),p(v)). The function
f(p(u),p(v)),(u′,v′) is an isomorphism from F(p(u),p(v)) onto F(u′,v′). We get an
isomorphism q from F(u,v) onto F(u′,v′) by composing p with f(p(u),p(v)),(u′,v′). For
x ∈ F(u,v), we let q(x) = f(p(u),p(v)),(u′,v′)(p(x)). Since f(p(u),p(v)),(u′,v′) is defined by
an existential formula, with parameters p(u), p(v), u′, v′, we can apply a uniform
effective procedure to compute q from (G1, p, G2).

If G1 = G2 and p is the identity, then (u, v) = (u′, v′), and by Lemma 3.1,
f(u,v),(u′,v′) is the identity. Consider G1, G2, G3, all copies of G, with functions p1, p2
such that G1 ∼=p1 G2 and G2 ∼=p2 G3. Then p3 = p2 ◦ p1 is an isomorphism from
G1 onto G3. Let q1 = Ψ(G1, p1, G2), q2 = Ψ(G2, p2, G3), and q3 = Ψ(G1, p3, G3).
We must show that q3 = q2 ◦ q1. The idea is to transfer everything to G3 and
use Lemma 3.1. Let r1 be the result of transferring q1 down to G3, so r1 =
f(p3(u),p3(v)),(p2(u′),p2(v′)). We have q1(x) = y if and only if r1(p3(x)) = p2(y). Let
r2 be the result of transferring q2 down to G3, so r2 = f(p2(u′),p2(v′)),(u′′,v′′). We have
q2(y) = z if and only if r2(p2(y)) = z. We let r3 be the result of transferring q3 down
to G3, so r3 = f(p3(u),p3(v)),(u′′,v′′). We have q3(x) = z if and only if r3(p3(x)) = z.
By Lemma 3.1, r3 = r2 ◦ r1. If q1(x) = y and q2(y) = z, then r1(p3(x)) = p2(y),
and r2(p2(y)) = z. Then r3(p3(x)) = z, so q3(x) = z, as required. ⊣

Corollary 3.4. There is a uniform effective interpretation of F in H (F ).

Proof. Apply the result from [3]. ⊣

The result from [3] gives a uniform interpretation of F in H (F ), valid for all
countable fields F, using computable Σ1 formulas with no parameters. The tuples
fromH (F ) that represent elements of F may have arbitrary arity. In the next section,
we will do better.

We note here that the uniform interpretation of F in H (F ) given in this section
allows one to transfer computable-structure-theoretic properties (in particular,
computable dimension) of any graph G to a two-step nilpotent group, without
introducing any constants. This is not a new result: in [8], Mekler gave a related
coding of graphs into two-step nilpotent groups, which, in concert with the
completeness of graphs for such properties (see [5]), yields the same fact. Mekler’s
goal was to transfer model-theoretic (stability) properties, not the completeness from
computable structure theory. In [5], Hirschfeldt, Khoussainov, Shore, and Slinko
used Maltsev’s interpretation of an integral domain in its Heisenberg group with
two parameters, along with the completeness of integral domains, to re-establish
it. More recently, the authors of [9] demonstrated the completeness of fields, by
coding graphs into fields, From that result, along with Corollary 3.4 and the usual
definition of H (F ) as a matrix group given by a set of triples from F, we achieve
a coding of graphs into two-step nilpotent groups, different from Mekler’s coding,
with no constants required.

§4. Defining the interpretation directly. Our goal in this section is to give explicit
finitary existential formulas that define a uniform effective interpretation of a field
in its Heisenberg group. We discovered this interpretation by thinking of the com-
putable functor and recalling the formulas that were used in proving Proposition 3.3
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and Corollary 3.4. These formulas—Maltsev’s formulas defining copies of the field
using parameters, and Morozov’s formula that defines isomorphisms between the
copies—were all existential.

Theorem 4.1. There are finitary existential formulas that, uniformly for every
field F, define an effective interpretation of F inH (F ), with elements of F represented
by triples of elements fromH (F ).

We offer intuition before giving the formal proof. The domain D of the
interpretation will consist of those triples (u, v, x) from H (F ) with uv ̸= vu and
x in the center: for each single (u, v), we apply Maltsev’s definitions, with u, v as
parameters, to get F(u,v)

∼= F . We view the triples arranged as follows:

F(u,v) F(u′,v′) F(u′′,v′′) ···

(u, v, x0)
(u, v, x1)
(u, v, x2)
(u, v, x3)

...

(u′, v′, x0)
(u′, v′, x1)
(u′, v′, x2)
(u′, v′, x3)

...

(u′′, v′′, x0)
(u′′, v′′, x1)
(u′′, v′′, x2)
(u′′, v′′, x3)

...

Here each column can be seen as F(u,v) for some non-commuting pair (u, v). Now
the system of isomorphisms from Lemma 3.1 will allow us to identify each element
in one column with a single element from any other column, and modding out by
this identification will yield a single copy of F.

Proof. Let H be a group isomorphic to H (F ). Recalling the natural isomor-
phismsf(u,v),(u′,v′) defined in Lemma 3.1 for non-commuting pairs (u, v) and (u′, v′),
we define D ⊆ H , a binary relation ∼ on D, and ternary relations ⊕, ⊙ (which are
binary operations) on D, as follows.

1. D is the set of triples (u, v, x) such that uv ̸= vu and xu = ux and xv = vx.
(Notice that, no matter which non-commuting pair (u, v) is chosen, the set of
corresponding elements x is precisely the center Z(H ), by Theorem 2.4.)

2. (u, v, x) ∼ (u′, v′, x′) holds if and only if the isomorphism f(u,v),(u′,v′) from
F(u,v) to F(u′,v′) maps x to x′.

3. ⊕((u, v, x), (u′, v′, y′), (u′′, v′′, z ′′)) holds if there exist y, z ∈ H such that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z ′′), and F(u,v) |= x + y = z.

4. ⊙((u, v, x), (u′, v′, y′), (u′′, v′′, z ′′)) holds if there exist y, z ∈ H such that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z ′′), and F(u,v) |= x · y = z.

Lemma 3.2 yielded a finitary existential formula defining the relation (u, v, x) ∼
(u′, v′, x′). Moreover, the field addition and multiplication were defined in F(u,v) by
finitary existential formulas using u and v, which were parameters there but here
are elements of the triples in D. Finally, we must consider the negations of the
relations. First, (u, v, x) ̸∼ (u′, v′, x′) if and only if some y′ commuting with u′ and
v′ satisfies (u, v, x) ∼ (u′, v′, y′) and y′ ̸= x′—that is, just if f(u,v),(u′,v′) maps x to
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some element different from x′. Likewise, since + is a binary operation in F(u,v),
the negation of ⊕((u, v, x), (u′, v′, y′), (u′′, v′′, z ′′)) is defined by saying that some
w′′ ̸= z ′′ is the sum:

∃w′′([w′′, u′′] = 1 = [w′′, v′′] & w′′ ̸= z ′′ & ⊕ ((u, v, x), (u′, v′, y′), (u′′, v′′, w′′))),

which is also existential, and similarly for the negation of ⊙. Therefore, all of
these sets have finitary existential definitions in the language of groups, with no
parameters, as do the negations of ∼, ⊕, and ⊙. (The complement of D, as a
relation on triples, also has a finitary quantifier-free definition, like D itself.)

The functoriality of the system of isomorphisms f(u,v),(u′,v′) (across all pairs of
pairs of noncommuting elements) ensures that ∼ will be an equivalence relation.
Lemma 3.1 showed thatf(u,v),(u,v) is always the identity, giving reflexivity. Transitivity
follows from the functorial property in that same lemma:

f(u,v),(u′′,v′′) = f(u′,v′),(u′′,v′′) ◦ f(u,v),(u′,v′),

and with (u′′, v′′) = (u, v), this property also yields the symmetry of ∼.
The definitions of ⊕ and ⊙ essentially say to convert all three triples into ∼-

equivalent triples with the same initial coordinates u and v, and then to check
whether the final coordinates satisfy Maltsev’s definitions of + and · in the field
F(u,v). Understood this way, they clearly respect the equivalence ∼. Finally, by fixing
any single noncommuting pair (u, v), we see that the set {(u, v, x) : x ∈ Z(H )}
contains one element from each ∼-class and, under ⊕ and ⊙, is isomorphic to
the field F(u,v) defined by Maltsev, which in turn is isomorphic to the original
field F. ⊣

It should be noted that, although this interpretation of F inH (F ) was developed
using computable functors on countable fields F, it is valid even when F is
uncountable (or finite).

In Theorem 4.1, to eliminate parameters from Maltsev’s definition of F inH (F ),
we gave an interpretation of F inH (F ), rather than another definition. (Recall that
a definition is an interpretation in which the equivalence relation on the domain is
simply equality.) We now demonstrate the impossibility of strengthening the theorem
to give a parameter-free definition of F inH (F ).

Proposition 4.2. There is no parameter-free definition of any field F in its
Heisenberg group H (F ) by finitary formulas.

Proof. Suppose that there were such a definition, and let D ⊆ (H (F ))n be
its domain. By Corollary 2.2, the only (x1, ... , xn) ∈ (H (F ))n that is fixed by all
automorphisms ofH (F ) is the tuple where every xi is the identity element ofH (F ).
So, for every x⃗ ∈ D except this identity tuple, there would be an αx⃗ ∈ Aut(H (F ))
that does not fix x⃗. With equality of n-tuples as the equivalence relation on D, αx⃗
yields an automorphism of the field F (viewed as D under the definable addition
and multiplication) that does not fix x⃗. However, both identity elements 0 and 1 in
F must be fixed by every automorphism of F. ⊣

§5. Question of bi-interpretability. If B is interpreted in A, we write BA for the
copy of B given by the interpretation of B in A. The structures A and B are effectively
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bi-interpretable if there are uniformly relatively computable isomorphisms f from A
onto ABA

and g from B onto BAB
. In general, the isomorphism f would map each

element of A to an equivalence class of equivalence classes of tuples in A. We would
represent f by a relationRf that holds for a, ā1, ... , ār if f maps a to the equivalence
class of the tuple of equivalence classes of the āi ’s. Similarly, the isomorphism g
would be represented by a relation Rg that holds for b, b̄1, ... , b̄r if g maps b to the
equivalence class of the tuple of equivalence classes of the b̄i ’s. Saying that f and
g are uniformly relatively computable is equivalent to saying that the relations Rf
and Rg have generalized computable Σ1 definitions without parameters.

For a field F and its Heisenberg group H (F ), when we define H (F ) in F, the
elements of H (F ) are represented by triples from F, and we have finitary formulas,
quantifier-free or existential, that define the group operation (as a relation). When
we interpret F in H (F ), the elements of F are represented by triples from H (F ),
and we have finitary existential formulas that define the field operations and their
negations (as ternary relations). Thus, in FH (F )F (the copy of F interpreted in
the copy of H (F ) that is defined in F), the elements are equivalence classes of
triples of triples. In H (F )F

H (F )
(the copy of H (F ) defined in the copy of F that is

interpreted in H (F )), the elements are triples of equivalence classes of triples. So,
an isomorphism f from F to FH (F )F is represented by a 10-ary relation Rf on F,

and an isomorphism g fromH (F ) toH (F )F
H (F )

is represented by a 10-ary relation
Rg on H (F ).

For a Turing computable embedding Θ of K in K ′ we have uniform effective bi-
interpretability if there are (generalized) computable Σ1 formulas with no parameters
that, for all A ∈ K and B = Θ(A), define isomorphisms from A to ABA

and from B
to BAB

. After a talk by the fifth author, Montalbán asked the following very natural
question.

Question 5.1. Do we have uniform effective bi-interpretability of F andH (F )?

The answer to this question is negative. In particular, Q and H (Q) are not
effectively bi-interpretable. One way to see this is to note that Q is rigid, while
H (Q) is not—in particular, for any non-commuting pair, u, v ∈ H (Q), there is a
group automorphism that takes (u, v) to (v, u). The negative answer to Question 5.1
then follows from [10, Lemma 6.3.8 (4)], which states that if A and B are effectively
bi-interpretable, then their automorphism groups are isomorphic.

Morozov’s result shows which half of effective bi-interpretability causes the
difficulties.

Proposition 5.1 (Morozov). There is a finitary existential formula that, for all F,
defines in F a specific isomorphism k from F to FH (F )F .

Proof. In F, we have the copy ofH (F ), consisting of triples (a, b, c) (representing
h(a, b, c)), for a, b, c ∈ F . The group operation, derived from matrix multiplication,
is (a, b, c) ∗ (a′, b′, c′) = (a + a′, b + b′, c + c′ + ab′). The definitions of the uni-
verse and the operation are quantifier-free, with no parameters. We have seen how
to interpret F inH (F ) using finitary existential formulas with no parameters. There
is a natural isomorphism k from F onto FH (F )F obtained as follows. In H (F ), let
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u = h(1, 0, 0) and v = h(0, 1, 0). Then ∆(u,v) = 1. We have an isomorphism mapping
F to F(u,v) that takes α to h(0, 0, α). We let k(α) be the ∼-class of (u, v, h(0, 0, α)).
The isomorphism k is defined in F by an existential formula. The complement of k
is defined by saying that k(α) has some other value. ⊣

The other half of what we would need for uniform effective bi-interpretability is
sometimes impossible, as remarked above in the case F = Q. We do not know of
any examples where F and H (F ) are effectively bi-interpretable: the obstacle for Q
might hold in all cases.

Problem 5.1. For which fields F, if any, are the automorphism groups of F and
H (F ) isomorphic?

Even if there are fields F such that Aut (F ) ∼= Aut(H (F )), we suspect that F and
H (F ) are not effectively bi-interpretable, simply because it is difficult to see how one
might give a computable Σ1 formula in the language of groups that defines a specific
isomorphism from H (F ) toH (F )F

H (F )
.

§6. Generalizing the method. Our first general definition and proposition follow
closely the example of a field and its Heisenberg group.

Definition 6.1. Let A be a structure for a computable relational language.
Assume that its basic relations areRi , whereRi is ki -ary. We say that A is effectively
defined in B with parameters b̄ if there exist D(b̄) ⊆ B<! , and relations Ri(b̄) and
¬Ri(b̄) on D(b̄)ki , defined by a uniformly computable sequence of generalized
computable Σ1 formulas with parameters b̄.

Proposition 6.1. Suppose A is effectively defined in B with parameters b̄. For c̄
in the orbit of b̄, let Ac̄ be the copy of A defined by the same formulas, but with
parameters c̄ replacing b̄. Then the following conditions together suffice to give an
effective interpretation of A in B without parameters:

1. The orbit of b̄ is defined by a computable Σ1 formula ϕ(ū).
2. There is a generalized computable Σ1 formula &(ū, v̄, x̄, ȳ) such that for all c̄, d̄

in the orbit of b̄, the formula &(c̄, d̄ , x̄, ȳ) defines an isomorphism fc̄,d̄ from Ac̄
onto Ad̄ .

3. The family of isomorphisms fc̄,d̄ preserves identity and composition.

Proof. We write D(b̄), ±Ri(b̄) for the set and relations that give a copy of A
and for the defining formulas (with parameters b̄). We obtain a parameter-free
interpretation of A in B as follows:

1. Let D consist of the tuples (c̄, x̄) such that c̄ is in the orbit of b̄ and x̄ is in
D(c̄). This is defined by a generalized computable Σ1 formula.

2. Let ∼ be the set of pairs ((c̄, x̄), (d̄ , ȳ)) in D2 such that fc̄,d̄ (x̄) = ȳ. This is
defined by a generalized computable Σ1 formula. For pairs (c̄, x̄), (d̄ , ȳ) from
D, it follows that (c̄, x̄) ̸∼ (d̄ , ȳ) if and only if

(∃ȳ′)((d̄ , ȳ′) ∈ D & fc̄,d̄ (x̄) = ȳ′ & ȳ′ ̸= ȳ).

Hence the negation of ∼ is also defined by a generalized computable Σ1
formula.
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3. We letR∗
i be the set of ki -tuples ((b̄1, x̄1), ... , (b̄ki , x̄ki )) inDki such that for the

tuple (ȳ1, ... , ȳki ) with fb̄j ,b̄1(x̄j) = ȳj , we have (ȳ1, ... , ȳki ) ∈ Ri(b̄1). This is
defined by a generalized computable Σ1 formula. The complementary relation
¬R∗

i is the set of tuples ((b̄1, x̄1), ... , (b̄ki , x̄ki )) such that for ȳ1, ... , ȳki as above,
(ȳ1, ... , ȳki ) ∈ ¬Ri(b̄1). This is also defined by a generalized computable Σ1
formula.

The verification is identical to that of Theorem 4.1. ⊣

Corollary 6.2. In the situation of Proposition 6.1, if D(b̄) is contained in Bn for
some single n ∈ !, then the& in item (2) and the formulas in Definition 6.1 will simply
be computable Σ1 formulas (as opposed to generalized computable Σ1 formulas) and
the interpretation of A in B without parameters will also be by computable (as opposed
to generalized) Σ1 formulas. ⊣

The reader will have noticed that we only produced an interpretation of A in B,
even though we originally had a definition (with parameters) of A in B. Proposition
4.2 shows that in general this is the best that can be done. On the other hand, we
may extend Proposition 6.1 and remove parameters even in the case where A is
interpreted (as opposed to being defined) with parameters in B. Here we use ≡ to
denote the equivalence relation on the domain of this interpretation with parameters.
(In Proposition 6.3 we will use it to build a new interpretation without parameters,
whose domain will have the equivalence ∼, just as before.)

Definition 6.2 (Effective interpretation with parameters). We say that A, with
basic relations Ri , ki -ary, is effectively interpreted with parameters b̄ in B if there
exist D ⊆ B<! , ≡⊆ D2, and R∗

i ⊆ Dki such that:

1. (D, (R∗
i )i)/≡ ∼= A, and

2. D, ± ≡, and ±R∗
i are defined by a computable sequence of generalized

computable Σ1 formulas, with a fixed finite tuple of parameters b̄.

Again, in the case where D ⊆ Bn for some fixed n, the formulas defining
the effective interpretation are computable Σ1 formulas of the usual kind, with
parameters b̄.

Proposition 6.3. Suppose that A (with basic relations Ri , ki -ary) has an effective
interpretation in B with parameters b̄. For c̄ in the orbit of b̄, let Ac̄ be the copy
of A obtained by replacing the parameters b̄ by c̄ in the defining formulas, with
domain Dc̄/≡c̄ containing ≡c̄-classes [ā]≡c̄ . Then the following conditions suffice for
an effective interpretation of A in B (without parameters):

1. The orbit of b̄ is defined by a computable Σ1 formula ϕ(x̄).
2. There is a relation F ⊆ B<! , with a generalized computable Σ1-definition, such

that for every c̄ and d̄ in the orbit of b̄, the set of pairs (x̄, ȳ) ∈ Dc̄ ×Dd̄ with
(c̄, d̄ , x̄, ȳ) ∈ F is invariant under ≡c̄ on x̄ and under ≡d̄ on ȳ, and defines an
isomorphism fc̄,d̄ from Ac̄ onto Ad̄ .

3. The family of isomorphisms fc̄,d̄ preserves identity and composition.

Proof. Let the new domain D consist of those tuples (c̄, x̄) with c̄ in the orbit of
b̄ and x̄ in Dc̄ . This is defined by a generalized computable Σ1 formula.
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Let the equivalence relation ∼ on D be the set of pairs ((c̄, x̄), (d̄ , ȳ)) ∈ D2 such
that fc̄,d̄ ([x̄]≡c̄ ) = [ȳ]≡d̄ . This is defined by a generalized computable Σ1 formula.
For (c̄, x̄), (d̄ , ȳ) ∈ D, we have (c̄, x̄) ̸∼ (d̄ , ȳ) if and only if

(∃ȳ′ ∈ Dd̄ ) (fc̄,d̄ ([x̄]≡c̄ ) = [ȳ′]≡d̄ & ȳ ̸≡d̄ ȳ
′).

Hence ̸∼ is also defined by a generalized computable Σ1 formula.
LetR∗

i be the set of ki -tuples ((b̄1, x̄1), ... , (b̄ki , x̄ki )) inDki such that for the tuple
(ȳ1, ... , ȳki ) with fb̄j ,b̄1(x̄j) = ȳj , we have (ȳ1, ... , ȳki ) ∈ Ri(b̄1). This is defined by
a generalized computable Σ1-formula. The complementary relation ¬R∗

i is the set
of tuples ((b̄1, x̄1), ... , (b̄ki , x̄ki )) such that for ȳ1, ... , ȳki as above, (ȳ1, ... , ȳki ) ∈
¬Ri(b̄1). This too is defined by a generalized computable Σ1 formula. Finally, as
in the proofs of Theorem 4.1 and Proposition 6.1, it is clear that this yields an
interpretation of A in B without parameters. ⊣

A relation R ⊆ B<! may have a definition that is generalized computable Σα for a
computable ordinal α, or generalized X -computable Σα for an X -computable ordinal
α, or generalized L!1! , or generalized Σα for a countable ordinal α. The definition
has the form

∨
n ϕn(x̄n), where the sequence of disjuncts (each in L!1! , but of

different arities n) is computable, or X -computable, or just countable. We note that
each generalizedL!1! formula is generalized X -computable Σα for an appropriately
chosen X and α, and each generalized Σα-formula is generalized X -computable Σα
for an appropriately chosen X.

As computable structure theorists, we have focused here on effective interpreta-
tions. Nevertheless, we wish to point out that our results apply not only to effective
interpretations, but to all interpretations using generalized L!1! formulas. The
following theorem generalizes Proposition 6.3 and considers every variation we can
imagine.

Theorem 6.4. Let A be a relational structure with basic relations Ri that are ki -
ary. Suppose there is an interpretation of A in B by generalized L!1! formulas, with
parameters b̄ from B. For c̄ in the orbit of b̄, let Ac̄ be the copy of A obtained by
the interpretation with parameters c̄ replacing b̄. Assume that there is a generalized
L!1!-definable relation F defining, for each c̄ and d̄ in the orbit of b̄, an isomorphism
fc̄,d̄ : Ac̄ → Ad̄ as in Proposition 6.3, and that this family is closed under composition,
with the identity map as fc̄,c̄ for all c̄.

Then there is an interpretation of A in B by L!1! formulas without parameters.
Moreover, the new interpretation satisfies all of the following.

• For each countable ordinalα, if the interpretation in (B, b̄) defines D, ≡, and each
Ri using Σα formulas from L!1! , and F and the orbit of b̄ in B are both defined
by Σα formulas, then the parameter-free interpretation also uses Σα formulas to
define these sets.

• For each countable ordinal α, if the interpretation in (B, b̄) defines each of D,
±≡, and ±Ri using Σα formulas, and F and the orbit of b̄ in B are both defined
by Σα formulas, then the parameter-free interpretation also uses Σα formulas to
define its domain, its equivalence relation ∼, the complement ̸∼, and its relations
±Ri . (Defining ̸∼ and ¬Ri this way is required by the usual notion of effective
Σα interpretation.)
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• Let X ⊆ !. If the interpretation in (B, b̄) uses X-computable formulas, and F
and the orbit of b̄ in B are both defined by X-computable formulas, then the
parameter-free interpretation also uses X-computable formulas.Of course, for
every countable set of L!1! formulas, there is an X that computes them all. If the
signature of A is infinite, and the formulas for the interpretation of A in (B, b̄)
are computable uniformly in X, then so are the formulas for the parameter-free
interpretation of A in B.
(With X = ∅, X-computable formulas are simply computable formulas.)

• If the interpretation in (B, b̄) has domain contained in Bn for a single n, so that
the defining formulas for this interpretation and for F in B are all in L!1! (as
opposed to generalized L!1!), then the parameter-free interpretation also uses
(non-generalized )L!1! formulas, and its domain is contained in Bn+|b̄|.

• If the interpretation in (B, b̄) uses finitary formulas, and F and the orbit of b̄ in B
are both defined by finitary formulas, then the parameter-free interpretation also
uses finitary formulas.

Proof. We obtain the parameter-free interpretation just as in the proof of
Proposition 6.3. Notice that, by a result of Scott in [11], the orbit of b̄ must be
definable by some L!1! formula. Checking the specific claims is simply a matter of
writing out the new formulas using the old ones. ⊣
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